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Abstract--To determine the void fraction in a tube of a rotating heat exchanger, an analytical investigation 
was undertaken to model frictionless two-phase flow boiling. Steady, one-dimensional separated two-phase 
conservation equations in differential form, were first applied to a stationary system. The equations were 
integrated between the inlet and exit of the flow channel to yield three coupled algebraic equations. The 
algebraic equations were then modified to represent rotating systems. To obtain closure, the velocity ratio, 
mass quality and void fraction are defined as a function of pressure. 

A numerical technique was used to solve the equations. Sample results are presented in a graph of mass 
quality versus void fraction. The graph demonstrates that a minimum heat input must be exceeded to 
change from a single-phase flow to saturated two-phase flow boiling. Also, the void fraction was found to 
increase for increasing heat input, decreasing mass flow rate, increasing inlet mass quality and decreasing 
pressure difference between the inlet and exit. 

INTRODUC TION 

A rotating heat exchanger has been introduced by Leidenfrost & Eisele (1972) as an effective 
means to improve the performance of heat pumps. In this application tangential fans, utilizing 
airfoil shaped tubes in the impeller assembly, form the evaporator and condenser. As illustrated 
in figure I, the working fluid is pumped through the hollow tubes as the unit rotates, about a 
central parallel axis, in the surrounding media. 

The airfoil shaped blades of this system allow high velocities relative to the external fluid 
while maintaining a low absolute fluid velocity. Therefore, it is possible to attain high external 
heat transfer coefficients without considerably increasing the energy consumption. In fact, the 
thermal resistance depends to a large degree on the internal boiling or condensing heat transfer 
coefficient. This means information regarding boiling and condensing heat transfer coefficients 
in airfoil shaped tubes rotating about a parallel axis must be known to design an optimum rotary 
heat pump. 

To ascertain saturated boiling heat transfer coefficients from experimental data obtained by 
White (1976), the surface area wetted by the liquid must be known. In most instances this area 
cannot be found directly, but indirectly through the void fraction. Since the void fraction 
appears in two-phase flow boiling equations, an analytical study was undertaken. 
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Figure 1. Schematic of rotary heat pump. 
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Existing theories by Levy (1%0, 1%7), Zuber & Findlay (1%5) and Kroeger & Zuber (1%8) 
usually relate the void fraction to an indirect function of mass quality or drift flux, which is 
difficult to determine. In addition, many theories have been developed by assuming adiabatic 
flow, which certainly does not apply in a situation where boiling occurs. Although techniques 
are available such as described by Delhaye (1972) which enable one to measure these variables, 
it is more desirable to have an expression which only involves system parameters that can be 
easily determined or specified. 

The rotational aspect of the system plays an important role in setting up the mathematical 
model. Inside the hollow blade, the centrifugal acceleration will force the liquid phase of the 
two-phase mixture outwards against the blade wall, as shown in figure 2. The vapor must then 
occupy the innermost portion of the blade. This means that the two-phase flow is separated and 
a unique liquid-vapor interface exists. Therefore, a separated two-phase flow model can be 
accurately applied to the rotary heat exchanger. 

The succeeding paragraphs describe how one-dimensional two-phase conservation equations 
can be integrated to yield three algebraic expressions containing three unknowns (detailed 
information can be found in the Ph.D. thesis of White 1978). The analysis is first performed for 
stationary systems. The resulting equations are then modified to model the rotating system. A 
numerical solution for frictionless two-phase flow is also presented. 

INTEGRATION OF CONSERVATION EQUATIONS 
The conservation equations for one-dimensional, steady-state two-phase flow, restricted to 

thermodynamic equilibrium between the phases, are: 
(i) Continuity 

d 
d---z [apaua + (I - a)pLUL] = O; [1] 

where a is the void fraction, p the density and u the velocity. The subscripts G and L refer to 
vapor and liquid, respectively. 

fib Momentum 

d dP dr . 
[OtpGUG 2 + (1 - a)pLUL 2] + ~ -- ~Z + l apa + (1 - a)pL]g sin 0 = O; [2] 

where P is pressure, r the two-phase friction factor, g acceleration of gravity and 0 the angle 
of inclination. 

(iii) Energy 

d [apaua(ea + Pva + U-'~-~ + gz sin O 

( f )] +(1--a)pLUL eL+PVL+ +gzs in#  = Dh ' [31 

axis of rotation 

vcp°r - - ~  ~w: 
W'--~ i lic~:,d e;dt: 

vap3r leaving 

liquid entering Q,, 

Figure 2. Schematic of hollow blade. 
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where e and v are specific internal energy and specific volume, Q" is the heat flux and ~ the 

hydraulic diameter. 
The continuity equation can be directly integrated to yield 

ap~ua + (I - a)pLUL = G; [4] 

where the constant of integration, G, has a value equal to the total mass flux. The mass quality, 
x, and basic definitions are used in forming the equality 

(1 - oI)pLU L = (1 - x)G. [5] 

Multiplying [4] by ( 1 -  x) and substituting [5] produces 

1--apL X 
= - -  [61 a p~ l - x  

where e is defined as the velocity ratio. 
The momentum equation cannot be integrated in terms of an integration constant. There- 

fore, it is necessary to evaluate the equation as a definite integral. The momentum equation [2] 
can be rewritten in different form, 

f, 
+ [aO~ + (1 - ~)OLlg sin 0 dz = 0. [71 

Equation [7] can be simplified by assuming that point 1 corresponds to the iNet of the flow 
channel, where conditions are known or can be determined easily, and point 2 refers to any 
position downstream. It can be shown that 

[XUG + ( I  - -  X)UL] 1 = GI)i, [81 

where the specific volume at inlet state condition is 

x ?  (1 - x/)  2 
vi = + - -  [9] 

PGffi PLi(1 -- ai)" 

Inserting [8] and [9] into [7] results in 

G[xuc+(1-X)UL]-G2v,+ P - P i -  f ( ~ ) d z  

+ f [ a ~  + (1 - a)PLlg sin 0 dz = 0. [10] 

Defining 

: R PG Pi ~2 -d~dz-vi+ .[al~+(1-a)pL]gsinOdz [l l]  

and assuming that the liquid density remains approximately constant throughout the length of 
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the flow channel, yields two dimensionless parameters designated as 

p,  = p_.~t 
PG 

and 

[121 

where 

• , iL 
tL = I ] - ~ p L  [19] 

i~6 iLG =i/--~-'~pL, [201 

M *  [ xi3 + (1--Xi)3 ] 2 

= Lp~,ai----~ p~-(iz~)2JPL , 

[( ) ] E* = P L 2  - g sin 0 z + i~ 
I/2G 2 

Equation [18] is the algebraic form of the energy equation. 

[211 

[221 

R* = RpL. [13] 

Placing [11]-[13] into [10] and rearranging, through a series of manipulations, produces the 
algebraic form of the integrated momentum equation: 

E2t ( 1 - x ) 2 + p * x 2 + R *  
x ( l - x )  e + p * = 0 .  [14] 

The energy equation is integrated in the same fashion as the momentum equation. 
Recalling the definition of enthaipy, 

i~ = ec, + Pv~ [151 

iL = eL+ PVL [16] 

and substituting [15] and [16] into [3], and then inserting [5] yields upon rearrangement 

Gd[iL+xiLa +xU-~+ (1-X)~--2+ gz sin 0]  4Q" =-~--h dz. [171 

Assuming that the heat flux remains constant throughout the length of the flow passage, [17] is 
integrated to yield 

i* + xi*o + p*2x3 + 2p'x2(1 - x)e + x(1 - x)2e 2 

+ p*2x2(1 - x) t- 2p*x(l - x) 2 + (! - x) 3 - M* = E*; [18] 
~2 45 
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CHOKED FLOW CONDITIONS AND MAXIMUM MASS QUALITY 

The conditions determining choked flow and maximum mass quality can be found from 
examination of the momentum and continuity equations. Eliminating the velocity ratio from- 
these equations results in 

2 
p~, - 2rt = 0 ,  x2+[(1-x)2+p*x2+R*] +(1 X) p ,  [231 

where 

a 

~ =  l - a "  [24] 

Since 17 defines a flow situation, it must be mathematically real; therefore, it can be shown, from 
the solution of[23], that the mass quality is restricted to the range 

0_<x_< 
1 - V (  - R * )  

1 - ~ / ( p * )  [25]  

in order to preserve the condition of real two-phase flow. 
One can conclude from [25] that the maximum mass quality is given by 

1 - X / (  - R * )  
xmax= 1-3/(p*) " [26] 

The range of values for Xmax is between zero and infinity. However, values greater than unity 
only indicate that it is possible to reach a state of superheated vapor. 

Equation [26] is identical to the relationship derived by Richter (1971). The concept of 
maximum mass quality indicates that there is a maximum heat absorption capability for a 
two-phase flow, as previously verified by Bosnjakovic (1967). 

Thc conditions determining choked flow can be found by examining the limits on the 
velocity ratio. Substituting the restriction given by [25] into the momentum equation [14], yields 
the limits of the velocity ratio for physically real two-phase flow, i.e. 

- X / ( p * )  _< ~ _< ~ / ( p * ) .  [27]  

It is obvious from [27] that 

I~ma,,I = 'X/(p*). [28] 

The above equation represents the condition for choked two-phase flow and occurs at 
maximum mass quality. Equation [28] is also known as Fauske's velocity ratio (see Fauske 
1962, 1964). The previous relationship has been independently verified mathematically by 
Moody (1965) and Richter (1971). 

INTEGRATED CONSERVATION EQUATIONS APPLIED TO ROTATING SYSTEMS 

The conservation equations, as presented by [6], [14] and [18], have been derived for a 
stationary system. It is desirable to modify these equations such that they may be applied to 
rotating systems. 

Two simplifications can be made regarding a system under rotation, provided that the 
centrifugal acceleration is much larger than the gravitation field: 

(1) For the rotating system under consideration, the centrifugal acceleration becomes much 



484 ~ D. WrnTE and w. LEIDENFROST 

more significant than the gravitational field. Since the centrifugal acceleration is perpendicular 
to the flow coordinate z, the term containing g sin O can be eliminated due to sin O = 0. 

(2) As a result of the centrifugal forces, the void fraction remains constant along the length 
of the duct (this is also approximately true for vertical channels under 25 g's acceleration); 
therefore, a = ai = ao. This assumption has been experimentally verified by White (1978). 
In the later instance a0 is used to denote that the void fraction is not a function of length. 

Utilizing the previous definition of void fraction, the continuity equation can be rewritten as 

e=l-aop, x 
ao 1 - x" [29] 

The form of the momentum and energy equation remain the same; however, the parameters R*, 
M* and E* contained in these equations are changed similar to [29]. 

The conservation equations with the preceding modifications can now be used in studying 
two-phase flow in rotating ducts. 

Examination of the conservation equations reveals that there are ten unknowns, ~, a0, x, P, 
(dr/dz), Q", p*, i*, "* zc and Az (assuming that the inlet conditions and channel geometry are 
known). Two of these unknowns can be eliminated. The heat flux can be excluded by 
considering it as a condition or design parameter which is externally set. A few methods have 
been developed to predict the two-phase frictional pressure drop, e.g. Martinelli & Nelson 
(1948) and others. This means auxiliary equations to calculate (dr/dz) are available, and hence, 
can be eliminated from the list of unknowns. The assumption of saturated flow allows the 
thermophysical properties to be related to pressure; therefore, they may also be eliminated. The 
continuity equation [29] can be used to eliminate the velocity ratio from the momentum and 
energy equations. This leaves two equations which involve the unknowns ao, x, P and z. Since 
the number of unknowns exceeds the number of available equations, a unique state at a point z0 
cannot be mathematically determined. 

Consider the diagram shown in figure 3. At a position zl a single value of a0 and x does not 
exist, but an array of values dependent on the pressure P. The same can be said for positions z2 
and z3. The rotational dynamics of the system require that a0 be constant along the flow path 
(indicated by the dashed line). This means the pressure at points zl, z2 and z3 are fixed by the 
physical conditions which must exict in a radial acceleration field. As demonstrated by figure 3, 
altering the pressure P3 changes all pressures upstream such that the void fraction remains 
constant. It is also recognized that P3 also defines a unique state for a0 and x. By considering P 
to be the pressure at z, then P becomes an independent variable which can be used to 
determine ao and x. However, a relationship describing the pressure as a function of flow 
length, or vice versa, does not exist. 

The last problem mentioned above can be partially overcome by looking at the boundary 
conditions. At the end of the flow channel the pressure obviously has a value equivalent to its 
exit value. Substituting z = L and P = Pe into the momentum and energy equations yields the 
mass quality and void fraction evaluated at the exit: 

Xe2[pe*(1 -- at0) + aoJ + a0] + Xe[ -- 2ao] + ao[1 + (1 -- ao)R*] = 0, [301 

ao I _ p ~  

ZI Z2 5 

x 

Figure 3. Qualitative representation of void ratio as a function of mass quality in a centrifugal system. 
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and 

where 

. ,  A[p*2X3]e A[1 - X)3]e * i*Le +XeILGe "+ ~" Ee = 0, [31] a02 (1 - ~o) 2 

xe = x ( P e ) ,  ao = a o ( p e ) ,  

1 fo L (dZ~dz_ , PeG--P'-~ d 2 \dz /  v, , R* [32] 

A [ p * 2 X 3 ] e  = (p*EX3)e  - (p*2X3)i , [33] 

A[(1 - x)3]¢ = (1 - x), 3 - (1 - x)i 3 , [34] 

r 4"~" ] 
E * =  1/2G 2 pL2 [ - ~ L + i i j .  [35] 

In [30] and [31] there are two unknowns, a0(pe) and xe(Pe); therefore, closure is possible and 
a unique solution exists. 

SOLUTION FOR FRICTIONLESS FLOW 
The simplest case to examine is that of frictionless flow. In this instance the problems 

involved in calculating the two-phase frictional pressure drop are eliminated. 
By using the quadratic formula, x, can be found as a function of void fraction and exit 

pressure from [30], i.e. 

ao + V ' ( -  ao(1 - ao){p* + [p*(1 - ao) + ao]R*}) 
x, = p*(1 - Oto) + Oto [36] 

Inserting the above equation into [31] results in a fifth degree polynomial in a0, which cannot 
be solved exactly due to X/(Oto) terms. However, a numerical solution is possible. 

A simple trial and error procedure can be used to numerically solve [31] and [36]. The first 
step is to define the inlet conditions, channel geometry, heat absorption and exit pressure. The 

°* , 
second step is to calculate p*'s, i*'s and ILG S from thermophysical property relationships using 
the inlet and exit pressure. Next, in starting the trial and error procedure, a value for a0 must be 
assumed to calculate a value of exit quality from [36]. The ao value chosen and the calculated 
value of xe yield the heat absorption from [31]. Comparing the calculated value of heat 
absorption with the given value will indicate in which direction a0 should be modified. For 
example, if Q(cal)< Q(given), then the void fraction should be increased. The process of 
calculating and comparing heat absorption is repeated until the desired accuracy, between the 
calculated and given values, is'reached. After the proper value of ao has been determined, the 
maximum mass quality and velocity ratio can be computed. 

The numerical scheme proviously described was used to generate the plot shown in figure 4. 
The graph was computed using thermophysical properties of Refrigerant-ll and independent 
flow parameters picked at random. 

RESULTS AND CONCLUSIONS 
The most surprising result of figure 4 is the realization of a minimum heat input for 

two-phase flow. This suggests that for flow situations where the heat input is less than 
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Figure 4. Exit mass quality and velocity ratio vs void fraction under frictionless flow in a rotating tube. 

minimum, two-phase flow conditions do not exist but rather single-phase forced convection 
prevails. Considering that it has been experimentally proven by White (1977) that a few 
refrigerants (and possibly other fluids) have the ability to form superheated liquids, makes this 
explanation plausible. 

From figure 4 it is also apparent that the flow chokes at minimum heat input. This is caused 
by the rapid transition from forced convection of the superheated liquid to two-phase flow. 
When the liquid changes to a vapor, the density changes on the order of 1000. This results in an 
instantaneous acceleration of vapor which causes the flow to choke.t Increasing the heat 
addition changes the upstream conditions such that the value of minimum heat input is exceeded. 
The liquid will then reach a level within the tube to achieve thermodynamic equilibrium. This 
phenomenon has been previously observed in earlier experiments by White (1976). However, at 
this time and before the present analysis it was not realized what was taking place and an 
experimental error was attributed to the observation. It should also be mentioned that the flow 
again chokes when the maximum heat absorption is reached for values of void fraction close to 
unity (see also Bosnjakovic 1967). The conditions of minimum and maximum heat absorption 
are unstable. In order to acheive a stable state, the flow will either adjust the inlet or exit 
conditions of the flow channel. If the flow did not adjust itself, boiling and generating 
superheated vapor would be impossible. 

Plots similar to figure 4 can be generated by changing the independent flow parameters; and 
even through these flow conditions are arbitrary, the trends are always the same. There is a 
value of input heat which must be exceeded to change from single-phase forced convection to 
two-phase saturated boiling. Changing the independent flow variables also indicates that, in 
general, the void fraction increases for increasing heat absorption, decreasing mass flow rate, 
increasing inlet mass quality and decreasing pressure difference between the inlet and exit. 

N O M E N C L A T U R E  

Dh hydraulic diameter, 
e internal energy per unit mass, kJ/kg 

G total mass flux, kg/m z. s 
g gravitational constant, 9.8 m/s 2 

iAir to air heat pumps are presently considered for more efficient heating. Ice formation on the evaporator might lower the 
heat input until the minimum value is reached. The system will then fail to operate. 
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i specific enthalpy, kJ/kg 
iLa ic-iL, latent heat of vaporization, kJ/kg 

L flow channel length, m 
P pressure, Pa 

Q" heat flux, W/m 2 
u velocity, m/s 
v specific volume, m3/kg 
x mass quality 
z flow direction, coordinate, m 
a void fraction 
ao void fraction for rotating systems 
• velocity ratio 
t9 density, kg/m 3 
r two-phase frictional scalar, Pa 

Subscripts 
L refers to liquid 
G refers to vapor 
i refers to inlet state 
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